Occupation times distribution for Brownian motion on graphs

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2002 J. Phys. A: Math. Gen. 35 L673
(http://iopscience.iop.org/0305-4470/35/46/101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.109
The article was downloaded on 02/06/2010 at 10:36

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Occupation times distribution for Brownian motion on graphs

Jean Desbois

Laboratoire de Physique Théorique et Modèles Statistiques, Université Paris-Sud, Bât. 100, F-91405 Orsay Cedex, France

Received 5 July 2002, in final form 27 September 2002
Published 7 November 2002
Online at stacks.iop.org/JPhysA/35/L673

Abstract

Considering a Brownian motion on a general graph, we study the joint law for the occupation times on all the bonds. In particular, we show that the Laplace transform of this distribution can be expressed as the ratio of two determinants. We give two formulations, with arc or vertex matrices, for this result and discuss a simple example.

PACS numbers: 05.40.Jc, 02.10.Ab

During the years 1930-40, Levy [1] developed detailed studies of the Brownian motion (BM), discovering many interesting properties. Among others, he got several arc-sine laws concerning the 1D BM (BM on an infinite line). For such a process, starting at $t=0$ from the origin O and stopping at time t, we denote by T the time spent in the region $x>0$. Levy established, for T, the probability law [2]

$$
\begin{equation*}
P(T<u)=\frac{2}{\pi} \arcsin \sqrt{\frac{u}{t}} \tag{1}
\end{equation*}
$$

with the density

$$
\begin{equation*}
\mathcal{P}_{t}(T)=\frac{1}{\pi} \frac{1}{\sqrt{T(t-T)}} \tag{2}
\end{equation*}
$$

In particular, the (double) Laplace transform of $\mathcal{P}_{t}(T)$ is written as

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-\gamma t} \int_{0}^{t} \mathrm{~d} T \mathcal{P}_{t}(T) \mathrm{e}^{-\xi T} \equiv \int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-\gamma t}\left\langle\mathrm{e}^{-\xi T}\right\rangle=\frac{1}{\sqrt{\gamma(\gamma+\xi)}} \tag{3}
\end{equation*}
$$

(From now on, $\langle\cdots\rangle$ stands for averaging over all Brownian curves starting from O.)
Since that time, Barlow and his collaborators [3] generalized this law in the following way.

Instead of a pure 1D BM, they considered (see figure 1) a Brownian particle starting from O and moving on a set of n semi-infinite lines originating from O. Moreover, each time the

Figure 1. In [3], the Brownian particle is allowed to move on a set of n semi-infinite lines originating from O.

Figure 2. A graph with 4 vertices, 6 bonds and 12 arcs.
particle reaches O, it comes out with probability p_{i} in the direction I_{i}. In that context, the authors of [3] established the following result (T_{i} is the time spent on the i th leg):

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-\gamma t}\left\langle\mathrm{e}^{-\sum_{i=1}^{n} \xi_{i} T_{i}}\right\rangle=\frac{\sum_{i=1}^{n} \frac{p_{i}}{\sqrt{\gamma+\xi_{i}}}}{\sum_{i=1}^{n} p_{i} \sqrt{\gamma+\xi_{i}}} \tag{4}
\end{equation*}
$$

What is considered in [3] is a kind of special infinite graph. Our goal in this letter is to get an analogue of formula (4) but for a general graph. Remark that the interest of mathematicians [4] and, also, of physicists [5] in graphs is not new. In particular, the study of the spectral properties of the Laplacian operator on finite graphs, in view of physical applications (organic molecules, superconducting networks, weakly disordered systems, ...), began more than 50 years ago. Recently, graphs have also been used to study models of nonequilibrium statistical physics (see [6] and references therein).

So, let us start by considering such a general graph \mathcal{G} made of V vertices, numbered from 0 to $V-1$, linked by B bonds of finite lengths. The coordination of vertex α is $m_{\alpha}\left(\sum_{\alpha=0}^{V-1} m_{\alpha}=2 B\right)$.

On each bond $[\alpha \beta]$, of length $l_{\alpha \beta}$, we define the coordinate $x_{\alpha \beta}$ that runs from 0 (vertex α) to $l_{\alpha \beta}$ (vertex β). The set of coordinates $\left\{x_{\alpha \beta}\right\}$ is simply denoted x.

An arc $(\alpha \beta)$ is defined as the oriented bond from α to β. Each bond $[\alpha \beta]$ is, therefore, associated with two arcs $(\alpha \beta)$ and $(\beta \alpha)$. In the following, we will consider the following ordering of the $2 B$ arcs: $\left(0 \mu_{1}\right)\left(0 \mu_{2}\right) \ldots\left(0 \mu_{m_{0}}\right) \ldots\left(\alpha \beta_{1}\right) \ldots\left(\alpha \beta_{i}\right) \ldots\left(\alpha \beta_{m_{\alpha}}\right) \ldots$.

For example, for the graph of figure 2, we have $V=4, B=6$, and the sequence of the 12 ordered arcs is: $(01)(02)(03)(10)(12)(13)(20)(21)(23)(30)(31)(32)$.

Now, let us suppose that a Brownian particle starts at $t=0$ from some vertex O (label 0) of the graph. At time t, this particle will reach some point that is left undetermined on the graph, and we denote as $T_{\alpha \beta}$ the time spent by this particle on the bond $[\alpha \beta]$.

Let $\mathcal{P}_{t}\left(\left\{T_{\alpha \beta}\right\}\right)$ be the joint distribution of the occupation times $T_{\alpha \beta}$. In the following, we will study the Laplace transforms [7]:
$\left\langle\mathrm{e}^{-\sum_{[\alpha \beta]} \xi_{\alpha \beta} T_{\alpha \beta}}\right\rangle \equiv \int \mathcal{P}_{t}\left(\left\{T_{\alpha \beta}\right\}\right) \mathrm{e}^{-\sum_{[\alpha \beta]} \xi_{\alpha \beta \beta} T_{\alpha \beta}} \prod_{[\alpha \beta]} \mathrm{d} T_{\alpha \beta}=\int_{\text {Graph }} \mathrm{d} x\langle x| \mathrm{e}^{-t H}|0\rangle$
$\mathcal{L} \equiv \int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-\gamma t}\left\langle\mathrm{e}^{-\sum_{\{\alpha \beta\}} \xi_{\alpha \beta} T_{\alpha \beta}}\right\rangle=\int_{\text {Graph }} \mathrm{d} x\langle x| \frac{1}{H+\gamma}|0\rangle \equiv \int_{\text {Graph }} \mathrm{d} x G(x)$.
On the bond $[\alpha \beta], H$ is the Hamiltonian $-\frac{1}{2} \Delta+\xi_{\alpha \beta}\left(\Delta \equiv \frac{\mathrm{d}^{2}}{\mathrm{~d} x_{\alpha \beta}^{2}}\right)$. Moreover, the behaviour of the resolvant $G(x)$ has to be specified in the neighbourhood of all the vertices.

To discuss this point, let us consider some vertex α with its nearest neighbours β_{i}, $i=1,2, \ldots, m_{\alpha}$, on the graph. Suppose that the Brownian particle reaches α. It will come out towards β_{i} with some arbitrary probability $p_{\alpha \beta_{i}}$. This implies $m_{\alpha}-1$ equations to be satisfied by the resolvant:

$$
\begin{equation*}
\frac{G_{\left(\alpha \beta_{1}\right)}}{p_{\alpha \beta_{1}}}=\frac{G_{\left(\alpha \beta_{2}\right)}}{p_{\alpha \beta_{2}}}=\cdots=\frac{G_{\left(\alpha \beta_{m_{\alpha}}\right)}}{p_{\alpha \beta_{m_{\alpha}}}} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{\left(\alpha \beta_{i}\right)}=\lim _{x_{\alpha \beta_{i}} \rightarrow 0} G\left(x_{\alpha \beta_{i}}\right) . \tag{8}
\end{equation*}
$$

Equation (7) can be established, for instance, by 'discretizing' the Brownian motion on each bond (i.e. by considering random walks with steps of lengths going to 0).

Remark that the resolvant will be continuous in vertex α only when the particle exits from α with the same probability in all directions.

Moreover, current conservation implies, if $\alpha \neq 0$

$$
\begin{equation*}
\left.\sum_{i=1}^{m_{\alpha}} G_{\left(\alpha \beta_{i}\right)}^{\prime} \equiv \sum_{i=1}^{m_{\alpha}} \frac{\mathrm{d} G}{\mathrm{~d} x_{\alpha \beta_{i}}}\right|_{x_{\alpha \beta_{i}}=0}=0 . \tag{9}
\end{equation*}
$$

On the other hand, on any bond $\left[0 \mu_{i}\right]$ starting at vertex O, G must satisfy $\left(\gamma_{\alpha \beta} \equiv \gamma+\xi_{\alpha \beta}\right)$

$$
\begin{equation*}
\left(-\frac{1}{2} \Delta+\gamma_{0 \mu_{i}}\right) G=\delta . \tag{10}
\end{equation*}
$$

Spatial integration on an infinitesimal neighbourhood of O leads to

$$
\begin{equation*}
-\frac{1}{2} \sum_{i=1}^{m_{0}} G_{\left(0 \mu_{i}\right)}^{\prime}=1 \tag{11}
\end{equation*}
$$

Now, let us show that all the derivatives of G appearing in the above equations can be expressed in terms of the quantities $G_{(\alpha \beta)}$. On the link $[\alpha \beta], G\left(x_{\alpha \beta}\right)$ must satisfy

$$
\begin{equation*}
\left(-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x_{\alpha \beta}^{2}}+\gamma_{\alpha \beta}\right) G\left(x_{\alpha \beta}\right)=0 \tag{12}
\end{equation*}
$$

with the solution

$$
\begin{equation*}
G\left(x_{\alpha \beta}\right)=G_{(\alpha \beta)} \frac{\sinh \sqrt{2 \gamma_{\alpha \beta}}\left(l_{\alpha \beta}-x_{\alpha \beta}\right)}{\sinh \sqrt{2 \gamma_{\alpha \beta}} l_{\alpha \beta}}+G_{(\beta \alpha)} \frac{\sinh \sqrt{2 \gamma_{\alpha \beta}} x_{\alpha \beta}}{\sinh \sqrt{2 \gamma_{\alpha \beta}} l_{\alpha \beta}} . \tag{13}
\end{equation*}
$$

So, we deduce

$$
\begin{equation*}
G_{(\alpha \beta)}^{\prime}=-c_{\beta \alpha} G_{(\alpha \beta)}+s_{\alpha \beta} G_{(\beta \alpha)} \tag{14}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{\alpha \beta}=\sqrt{2 \gamma_{\alpha \beta}} \operatorname{coth} \sqrt{2 \gamma_{\alpha \beta}} l_{\alpha \beta}=c_{\beta \alpha} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
s_{\alpha \beta}=\frac{\sqrt{2 \gamma_{\alpha \beta}}}{\sinh \sqrt{2 \gamma_{\alpha \beta}} l_{\alpha \beta}}=s_{\beta \alpha} . \tag{16}
\end{equation*}
$$

Equation (14) allows us to write equations (7), (9), (11) in a matrix form

$$
\begin{equation*}
M G=L \tag{17}
\end{equation*}
$$

where G and L are two $(2 B \times 1)$ vectors. The components of G are the quantities $G_{\left(\alpha \beta_{i}\right)}$ and for the components of L we have $L_{j}=2 \delta_{j 0}$.
M is a $(2 B \times 2 B)$ arc matrix with the nonvanishing elements (α runs from 0 to $V-1$)

$$
\begin{align*}
& M_{\left(\alpha \beta_{1}\right)\left(\alpha \beta_{i}\right)}=c_{\alpha \beta_{i}} \quad M_{\left(\alpha \beta_{1}\right)\left(\beta_{i} \alpha\right)}=-s_{\alpha \beta_{i}} \quad i=1, \ldots, m_{\alpha} \tag{18}\\
& M_{\left(\alpha \beta_{i}\right)\left(\alpha \beta_{j}\right)}=\frac{1}{p_{\alpha \beta_{j}}}\left(\delta_{i j}-\delta_{i+1, j}\right) \quad i=2, \ldots, m_{\alpha}-1 \tag{19}\\
& M_{\left(\alpha \beta_{m_{\alpha}}\right)\left(\alpha \beta_{j}\right)}=\frac{1}{p_{\alpha \beta_{j}}}\left(\delta_{m_{\alpha} j}-\delta_{1 j}\right) . \tag{20}
\end{align*}
$$

Inverting the matrix M, it is now easy to get the quantities $G_{(\alpha \beta)}$.
Equations (6) and (13) lead to the analytic expression for the Laplace transform \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}=\frac{\operatorname{det} M_{1}}{\operatorname{det} M} \tag{21}
\end{equation*}
$$

The matrix M_{1} is the matrix M where the first line has been replaced by

$$
\begin{equation*}
\left(M_{1}\right)_{\left(0 \mu_{1}\right)(\alpha \beta)}=\frac{c_{\alpha \beta}-s_{\alpha \beta}}{\gamma_{\alpha \beta}} \equiv a_{\alpha \beta} . \tag{22}
\end{equation*}
$$

Equation (21) is what we call the arc matrix formulation. Let us now show that this result can be recast in terms of vertex matrices.

Multiplying the column $\left(\alpha \beta_{j}\right)$ of matrix M by $p_{\alpha \beta_{j}}$ and using standard properties of determinants, we readily get

$$
\begin{equation*}
\mathcal{L}=\frac{\operatorname{det} \mathcal{M}_{1}}{\operatorname{det} \mathcal{M}} \tag{23}
\end{equation*}
$$

where \mathcal{M} is now a $(V \times V)$ vertex matrix with elements (α, β run from 0 to $V-1$)

$$
\begin{align*}
\mathcal{M}_{\alpha \alpha} & =\sum_{i=1}^{m_{\alpha}} p_{\alpha \beta_{i}} c_{\alpha \beta_{i}} & & \tag{24}\\
\mathcal{M}_{\alpha \beta} & =-p_{\beta \alpha} s_{\alpha \beta} & & \text { if }[\alpha \beta] \text { is a bond } \tag{25}\\
& =0 & & \text { otherwise } . \tag{26}
\end{align*}
$$

\mathcal{M}_{1} is the same as matrix \mathcal{M} except for the first line that is replaced by

$$
\begin{equation*}
\left(\mathcal{M}_{1}\right)_{0 \alpha}=\sum_{i=1}^{m_{\alpha}} p_{\alpha \beta_{i}}\left(\frac{c_{\alpha \beta_{i}}-s_{\alpha \beta_{i}}}{\gamma_{\alpha \beta_{i}}}\right) \equiv \sum_{i=1}^{m_{\alpha}} p_{\alpha \beta_{i}} a_{\alpha \beta_{i}} . \tag{27}
\end{equation*}
$$

It is worthwhile noting that, in general, vertex matrices are of a smaller size than arc matrices.

Figure 3. A graph with two finite legs starting from O.

To illustrate this work, let us consider the example of the graph of figure 3. For this graph we have, obviously, $p_{10}=p_{20}=1$.
(i) Arc formulation. Matrices M and M_{1} can be written as

$$
M=\left(\begin{array}{cccc}
c_{01} & c_{02} & -s_{01} & -s_{02} \\
-\frac{1}{p_{01}} & \frac{1}{p_{02}} & 0 & 0 \\
-s_{01} & 0 & c_{01} & 0 \\
0 & -s_{02} & 0 & c_{02}
\end{array}\right) \quad M_{1}=\left(\begin{array}{cccc}
a_{01} & a_{02} & a_{01} & a_{02} \\
-\frac{1}{p_{01}} & \frac{1}{p_{02}} & 0 & 0 \\
-s_{01} & 0 & c_{01} & 0 \\
0 & -s_{02} & 0 & c_{02}
\end{array}\right) .
$$

For \mathcal{L}, we get

$$
\begin{align*}
\mathcal{L}= & \frac{\sum_{i=1}^{2} \frac{p_{0 i}}{\sqrt{0 i t}} \tanh \sqrt{2 \gamma_{0 i}} l_{0 i}}{\sum_{i=1}^{2} p_{0 i} \sqrt{\gamma_{0 i}} \tanh \sqrt{2 \gamma_{0 i}} l_{0 i}} \tag{28}\\
& \longrightarrow \frac{\sum_{i=1}^{2} \frac{p_{0 i}}{\sqrt{\gamma_{0}}}}{\sum_{i=1}^{2} p_{0 i} \sqrt{\gamma_{0 i}}} \quad \text { when } \quad l_{0 i} \rightarrow \infty . \tag{29}
\end{align*}
$$

The generalization to an n-leg graph is straightforward and leads to the result (4).
Now, let us briefly discuss equation (28).
When γ goes to infinity, (28) becomes equivalent to (29). The latest equation actually corresponds to the small time regime for the finite graph and the joint distribution $\mathcal{P}_{t}\left(\left\{T_{\alpha \beta}\right\}\right)$ does not depend on the lengths of the links. This is because, in that regime, the particle does not have enough time to explore the whole graph; so, the legs appear to be infinite. In particular, for the mean occupation time $\left\langle T_{01}\right\rangle$ we get

$$
\begin{equation*}
\left\langle T_{01}\right\rangle \sim p_{01} t \quad \text { when } \quad t \rightarrow 0^{+} . \tag{30}
\end{equation*}
$$

On the other hand, the large time regime leads to

$$
\begin{equation*}
\left\langle T_{01}\right\rangle \sim\left(\frac{p_{01} l_{01}}{p_{01} l_{01}+p_{02} l_{02}}\right) t \quad \text { when } \quad t \rightarrow \infty \tag{31}
\end{equation*}
$$

Finally, in the intermediate regime, $\left\langle T_{01}\right\rangle$ is, in general, no longer proportional to t. This is readily seen on its Laplace transform

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-\gamma t}\left\langle T_{01}\right\rangle=\frac{1}{\gamma^{2}} \frac{p_{01} \tanh \sqrt{2 \gamma} l_{01}}{p_{01} \tanh \sqrt{2 \gamma} l_{01}+p_{02} \tanh \sqrt{2 \gamma} l_{02}} . \tag{32}
\end{equation*}
$$

However, we observe that things become very simple when $l_{01}=l_{02}$: in that case, we get the same result as for an infinite graph, i.e. $\left\langle T_{01}\right\rangle=p_{01} t$ whatever t is.
(ii) Vertex formulation. Matrices \mathcal{M} and \mathcal{M}_{1} can be written as
$\mathcal{M}=\left(\begin{array}{ccc}p_{01} c_{01}+p_{02} c_{02} & -s_{01} & -s_{02} \\ -p_{01} s_{01} & c_{01} & 0 \\ -p_{02} s_{02} & 0 & c_{02}\end{array}\right) \quad \mathcal{M}_{1}=\left(\begin{array}{ccc}p_{01} a_{01}+p_{02} a_{02} & a_{01} & a_{02} \\ -p_{01} s_{01} & c_{01} & 0 \\ -p_{02} s_{02} & 0 & c_{02}\end{array}\right)$.
Obviously, they lead to the same result (28) for \mathcal{L}.

I acknowledge Professors M Yor and A Comtet and Dr O Bénichou for stimulating discussions.

References

[1] Levy P 1948 Processus Stochastiques et Mouvement Brownien (Paris: Editions Jacques Gabay)
[2] Levy P 1939 Compositio Math. 7283
[3] Barlow M, Pitman J and Yor M 1989 Sém. Probabilités XXIII (Lecture Notes in Maths vol 1372) (Berlin: Springer) p 294
[4] Ihara Y 1966 J. Math. Soc. Japan 18219
Roth J P 1983 C. R. Acad. Sci. Paris 296793
Stark H M and Terras A A 1996 Adv. Math. 121124
Wu F Y and Kunz H 1999 Ann. Combin. 3475
[5] Rudenberg K and Scherr C 1953 J. Chem. Phys. 211565
Alexander S 1983 Phys. Rev. B 271541
Rammal R 1984 J. Physique I 45191
Douçot B and Rammal R 1985 Phys. Rev. Lett. 551148
Douçot B and Rammal R 1986 J. Physique 47973
Avron J E and Sadun L 1991 Ann. Phys., NY 206440
Kottos T and Smilansky U 1997 Phys. Rev. Lett. 794794
Kottos T and Smilansky U 1999 Ann. Phys., NY 27476
Pascaud M and Montambaux G 1999 Phys. Rev. Lett. 824512
Akkermans E, Comtet A, Desbois J, Montambaux G and Texier C 2000 Ann. Phys., NY 28410
Desbois J 2001 Eur. Phys. J. B 15201
Comtet A, Desbois J and Majumdar S N 2002 J. Phys. A: Math. Gen. submitted
[6] Dhar D 1999 Preprint cond-mat/9909009
[7] Kac M 1949 Trans. Am. Math. Soc. 651

