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Abstract
Considering a Brownian motion on a general graph, we study the joint law for
the occupation times on all the bonds. In particular, we show that the Laplace
transform of this distribution can be expressed as the ratio of two determinants.
We give two formulations, with arc or vertex matrices, for this result and discuss
a simple example.

PACS numbers: 05.40.Jc, 02.10.Ab

During the years 1930–40, Levy [1] developed detailed studies of the Brownian motion
(BM), discovering many interesting properties. Among others, he got several arc-sine laws
concerning the 1D BM (BM on an infinite line). For such a process, starting at t = 0 from
the origin O and stopping at time t, we denote by T the time spent in the region x > 0. Levy
established, for T, the probability law [2]

P(T < u) = 2

π
arcsin

√
u

t
(1)

with the density

P t (T ) = 1

π

1√
T (t − T )

. (2)

In particular, the (double) Laplace transform of Pt (T ) is written as∫ ∞

0
dt e−γ t

∫ t

0
dT Pt (T ) e−ξT ≡

∫ ∞

0
dt e−γ t 〈e−ξT 〉 = 1√

γ (γ + ξ)
. (3)

(From now on, 〈· · ·〉 stands for averaging over all Brownian curves starting from O.)
Since that time, Barlow and his collaborators [3] generalized this law in the following

way.
Instead of a pure 1D BM, they considered (see figure 1) a Brownian particle starting from

O and moving on a set of n semi-infinite lines originating from O. Moreover, each time the
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Figure 1. In [3], the Brownian particle is allowed to move on a set of n semi-infinite lines
originating from O.
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Figure 2. A graph with 4 vertices, 6 bonds and 12 arcs.

particle reaches O, it comes out with probability pi in the direction Ii . In that context, the
authors of [3] established the following result (Ti is the time spent on the ith leg):

∫ ∞

0
dt e−γ t

〈
e−∑n

i=1 ξiTi
〉 =

∑n
i=1

pi√
γ +ξi∑n

i=1 pi

√
γ + ξi

. (4)

What is considered in [3] is a kind of special infinite graph. Our goal in this letter is to get an
analogue of formula (4) but for a general graph. Remark that the interest of mathematicians
[4] and, also, of physicists [5] in graphs is not new. In particular, the study of the spectral
properties of the Laplacian operator on finite graphs, in view of physical applications (organic
molecules, superconducting networks, weakly disordered systems, . . . ), began more than
50 years ago. Recently, graphs have also been used to study models of nonequilibrium
statistical physics (see [6] and references therein).

So, let us start by considering such a general graph G made of V vertices, numbered
from 0 to V − 1, linked by B bonds of finite lengths. The coordination of vertex α is
mα

(∑V −1
α=0 mα = 2B

)
.

On each bond [αβ], of length lαβ , we define the coordinate xαβ that runs from 0
(vertex α) to lαβ (vertex β). The set of coordinates {xαβ} is simply denoted x.

An arc (αβ) is defined as the oriented bond from α to β. Each bond [αβ] is, therefore,
associated with two arcs (αβ) and (βα). In the following, we will consider the following
ordering of the 2B arcs: (0µ1)(0µ2) . . . (0µm0) . . . (αβ1) . . . (αβi) . . . (αβmα

) . . . .
For example, for the graph of figure 2, we have V = 4, B = 6, and the sequence of the

12 ordered arcs is: (01)(02)(03)(10)(12)(13)(20)(21)(23)(30)(31)(32).
Now, let us suppose that a Brownian particle starts at t = 0 from some vertex O (label 0)

of the graph. At time t, this particle will reach some point that is left undetermined on the
graph, and we denote as Tαβ the time spent by this particle on the bond [αβ].
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Let Pt ({Tαβ}) be the joint distribution of the occupation times Tαβ . In the following, we
will study the Laplace transforms [7]:〈
e−∑[αβ] ξαβTαβ

〉 ≡ ∫
Pt ({Tαβ}) e−∑[αβ] ξαβTαβ

∏
[αβ]

dTαβ =
∫

Graph
dx〈x| e−tH |0〉 (5)

L ≡
∫ ∞

0
dt e−γ t

〈
e−∑[αβ] ξαβTαβ

〉 = ∫
Graph

dx〈x| 1

H + γ
|0〉 ≡

∫
Graph

dx G(x). (6)

On the bond [αβ],H is the Hamiltonian − 1
2� + ξαβ

(
� ≡ d2

dx2
αβ

)
. Moreover, the behaviour of

the resolvant G(x) has to be specified in the neighbourhood of all the vertices.
To discuss this point, let us consider some vertex α with its nearest neighbours βi ,

i = 1, 2, . . . ,mα , on the graph. Suppose that the Brownian particle reaches α. It will come
out towards βi with some arbitrary probability pαβi

. This implies mα − 1 equations to be
satisfied by the resolvant:

G(αβ1)

pαβ1

= G(αβ2)

pαβ2

= · · · = G(αβmα )

pαβmα

(7)

where

G(αβi) = lim
xαβi

→0
G(xαβi

). (8)

Equation (7) can be established, for instance, by ‘discretizing’ the Brownian motion on each
bond (i.e. by considering random walks with steps of lengths going to 0).

Remark that the resolvant will be continuous in vertex α only when the particle exits from
α with the same probability in all directions.

Moreover, current conservation implies, if α �= 0
mα∑
i=1

G′
(αβi)

≡
mα∑
i=1

dG

dxαβi

∣∣∣∣
xαβi

=0
= 0. (9)

On the other hand, on any bond [0µi] starting at vertex O, G must satisfy (γαβ ≡ γ + ξαβ)(− 1
2� + γ0µi

)
G = δ. (10)

Spatial integration on an infinitesimal neighbourhood of O leads to

− 1

2

m0∑
i=1

G′
(0µi)

= 1. (11)

Now, let us show that all the derivatives of G appearing in the above equations can be expressed
in terms of the quantities G(αβ). On the link [αβ],G(xαβ) must satisfy(

−1

2

d2

d x2
αβ

+ γαβ

)
G(xαβ) = 0 (12)

with the solution

G(xαβ) = G(αβ)

sinh
√

2γαβ(lαβ − xαβ)

sinh
√

2γαβlαβ

+ G(βα)

sinh
√

2γαβxαβ

sinh
√

2γαβlαβ

. (13)

So, we deduce

G′
(αβ) = −cβαG(αβ) + sαβG(βα) (14)

with

cαβ = √
2γαβ coth

√
2γαβlαβ = cβα (15)
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sαβ =
√

2γαβ

sinh
√

2γαβlαβ

= sβα. (16)

Equation (14) allows us to write equations (7), (9), (11) in a matrix form

MG = L (17)

where G and L are two (2B × 1) vectors. The components of G are the quantities G(αβi) and
for the components of L we have Lj = 2δj0.

M is a (2B × 2B) arc matrix with the nonvanishing elements (α runs from 0 to V − 1)

M(αβ1)(αβi) = cαβi
M(αβ1)(βiα) = −sαβi

i = 1, . . . ,mα (18)

M(αβi)(αβj ) = 1

pαβj

(δij − δi+1,j ) i = 2, . . . ,mα − 1 (19)

M(αβmα)(αβj ) = 1

pαβj

(
δmαj − δ1j

)
. (20)

Inverting the matrix M, it is now easy to get the quantities G(αβ).
Equations (6) and (13) lead to the analytic expression for the Laplace transform L:

L = det M1

det M
. (21)

The matrix M1 is the matrix M where the first line has been replaced by

(M1)(0µ1)(αβ) = cαβ − sαβ

γαβ

≡ aαβ. (22)

Equation (21) is what we call the arc matrix formulation. Let us now show that this result can
be recast in terms of vertex matrices.

Multiplying the column (αβj ) of matrix M by pαβj
and using standard properties of

determinants, we readily get

L = detM1

detM (23)

where M is now a (V × V ) vertex matrix with elements (α, β run from 0 to V − 1)

Mαα =
mα∑
i=1

pαβi
cαβi

(24)

Mαβ = −pβαsαβ if [αβ] is a bond (25)

= 0 otherwise. (26)

M1 is the same as matrix M except for the first line that is replaced by

(M1)0α =
mα∑
i=1

pαβi

(
cαβi

− sαβi

γαβi

)
≡

mα∑
i=1

pαβi
aαβi

. (27)

It is worthwhile noting that, in general, vertex matrices are of a smaller size than arc
matrices.
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Figure 3. A graph with two finite legs starting from O.

To illustrate this work, let us consider the example of the graph of figure 3. For this graph
we have, obviously, p10 = p20 = 1.

(i) Arc formulation. Matrices M and M1 can be written as

M =




c01 c02 −s01 −s02

− 1
p01

1
p02

0 0

−s01 0 c01 0

0 −s02 0 c02


 M1 =




a01 a02 a01 a02

− 1
p01

1
p02

0 0

−s01 0 c01 0

0 −s02 0 c02


 .

For L, we get

L =
∑2

i=1
p0i√
γ0i

tanh
√

2γ0i l0i∑2
i=1 p0i

√
γ0i tanh

√
2γ0i l0i

(28)

−→
∑2

i=1
p0i√
γ0i∑2

i=1 p0i
√

γ0i

when l0i → ∞. (29)

The generalization to an n-leg graph is straightforward and leads to the result (4).
Now, let us briefly discuss equation (28).
When γ goes to infinity, (28) becomes equivalent to (29). The latest equation actually

corresponds to the small time regime for the finite graph and the joint distribution Pt ({Tαβ})
does not depend on the lengths of the links. This is because, in that regime, the particle
does not have enough time to explore the whole graph; so, the legs appear to be infinite. In
particular, for the mean occupation time 〈T01〉 we get

〈T01〉 ∼ p01t when t → 0+. (30)

On the other hand, the large time regime leads to

〈T01〉 ∼
(

p01l01

p01l01 + p02l02

)
t when t → ∞. (31)

Finally, in the intermediate regime, 〈T01〉 is, in general, no longer proportional to t. This is
readily seen on its Laplace transform∫ ∞

0
dt e−γ t 〈T01〉 = 1

γ 2

p01 tanh
√

2γ l01

p01 tanh
√

2γ l01 + p02 tanh
√

2γ l02
. (32)

However, we observe that things become very simple when l01 = l02: in that case, we get the
same result as for an infinite graph, i.e. 〈T01〉 = p01t whatever t is.

(ii) Vertex formulation. Matrices M and M1 can be written as

M =




p01c01 + p02c02 −s01 −s02

−p01s01 c01 0

−p02s02 0 c02


 M1 =




p01a01 + p02a02 a01 a02

−p01s01 c01 0

−p02s02 0 c02


 .

Obviously, they lead to the same result (28) for L.
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